Theoret. chim. Acta (Berl.) 8, 292–299 (1967)

Modellrechnungen zur symmetrischen Vierzentrenbindung. II

P. KADURA

Institut für Physikalische Chemie der Universität Jena, DDR (Direktor: Prof. Dr. H. DUNKEN)

Eingegangen am 8. Mai 1967

One-electron-LCAO-MO's of a system consisting of four protons in tetrahedral configuration are used to construct singlet-AP-electron configurations of symmetry-type A_1 . CI-calculations are carried out with them. The ground-state energy is optimized by scaling. The potentialenergy-function for the tetrahedral H_4^{++} ground-state in dependance of the edge R of the tetrahedron shows a local minimum at R = 2.47 au.

Aus den Einelektronen-LCAO-MO's eines Systems von vier Protonen in tetraedrischer Konfiguration werden sämtliche Singulett-AP-Konfigurationen der Symmetrie A_1 konstruiert und mit diesen eine CI-Rechnung durchgeführt. Der Grundzustand wird durch 'Scaling' optimiert. Man erhält eine Potentialkurve für den Grundzustand des Systems H_4^{++} in Abhängigkeit von der Kantenlänge R des Tetraeders, die für R = 2,47 AE ein relatives Minimum zeigt.

On construit à l'aide des O.M.-L.C.A.O. d'un système de quatre protons en configuration tétraédrique toutes les configurations singulets de symétrie A_1 ; on les utilise pour un calcul d'interaction de configurations. L'état fondamental est optimisé par "scaling". On obtient une courbe de potentiel du système H_4^{++} en fonction de la longueur de l'arête du tétraèdre, présentant un minimum relatif pour R = 2,47.

In einer Arbeit I gleichen Titels [7] wurde über die Einelektronen-MO's eines Systems von vier Protonen in tetraedrischer Konfiguration (Kantenlänge R) berichtet, die sich im LCAO-Schema bei Verwendung von 1s-Atomorbitalen ergeben. Sie lauteten:

$$\begin{split} A_1 \colon \psi_1(1) &= \frac{1}{\sqrt{4} + 12\mathrm{S}} \left[a(1) + b(1) + c(1) + d(1) \right]; \\ T_2 \colon \psi_2(1) &= \frac{1}{\sqrt{2} - 2\mathrm{S}} \cdot \left[a(1) - b(1) \right], \\ \psi_3(1) &= \frac{1}{\sqrt{2} - 2\mathrm{S}} \left[c(1) - d(1) \right], \\ \psi_4(1) &= \frac{1}{\sqrt{4} - 4\mathrm{S}} \left[a(1) + b(1) - c(1) - d(1) \right] \end{split}$$

mit $a(1) = \sqrt{\alpha^3/\pi} \cdot \exp(-\alpha r_{A1})$ usw. Der Inhalt des jetzigen Beitrags ist die genäherte Berechnung des Grundzustandes desselben Systems mit zwei Elektronen (H₄⁺⁺ in tetraedrischer Kernkonfiguration).

Rechengang

Aus obigen Einelektronen-MO's lassen sich in der AP-Näherung folgende orthonormierte Zweielektronen-Singulett-Konfigurationen der Symmetrie A_1 bilden:

$$\begin{split} \varPhi_1(1,2) &= \psi_1(1) \; \psi_1(2) \; , \\ \varPhi_2(1,2) &= \frac{2}{3} \; \psi_2(1) \; \psi_2(2) + \frac{2}{3} \; \psi_3(1) \; \psi_3(2) + \frac{1}{3} \; \psi_4(1) \; \psi_4(2) \; . \end{split}$$

Der Spinanteil ist in beiden Fällen gleich $[\alpha(1)\beta(2) - \alpha(2)\beta(1)]/\sqrt{2}$, er wird hier und im folgenden weggelassen.

Mit dem Hamiltonoperator (in atomaren Einheiten)

$$\begin{split} \mathfrak{H} &= -\frac{1}{2} \varDelta_1 - \frac{1}{2} \varDelta_2 - \frac{Z}{r_{A1}} - \frac{Z}{r_{B1}} - \frac{Z}{r_{C1}} - \frac{Z}{r_{D1}} - \frac{Z}{r_{A2}} - \frac{Z}{r_{B2}} - \frac{Z}{r_{C2}} - \frac{Z}{r_{D2}} + \\ &+ \frac{1}{r_{12}}, \quad (Z = 1) \end{split}$$

und dem CI-Ansatz

$$\Phi = c_1 \Phi_1(1,2) + c_2 \Phi_2(1,2)$$

erhält man für die in der Säkulargleichung auftretenden Matrixelemente:

$$\begin{split} H_{11} &= \frac{2}{1+3S} \left[J_1 + 3J_2 + J_3 + 6J_4 + 3J_5 + 6J_6 \right] + \\ &+ \frac{1}{(1+3S)^2} \left[\frac{1}{4} J_7 + \frac{3}{4} J_8 + 3J_9 + \frac{3}{2} J_{10} + 3J_{11} + 6J_{12} + \frac{3}{2} J_{13} \right], \\ H_{22} &= \frac{2}{1-S} \left[J_1 - J_2 + J_3 - 2J_4 + 3J_5 - 2J_6 \right] + \\ &+ \frac{1}{(1-S)^2} \left[\frac{25}{36} J_7 + \frac{11}{36} J_8 - \frac{25}{9} J_9 + \frac{43}{18} J_{10} + \frac{7}{9} J_{11} - 2J_{12} + \frac{11}{18} J_{13} \right], \\ H_{12} &= \frac{1}{(1+3S)(1-S)} \left[\frac{5}{12} J_7 - \frac{5}{12} J_8 + \frac{5}{3} J_9 + \frac{5}{6} J_{10} - \frac{5}{3} J_{11} - \frac{5}{6} J_{13} \right]. \end{split}$$

Neben den Einelektronen
integralen S und J_1 bis J_6 (siehe [7]) tret
en die Integrale der Elektronenwechselwirkung J_7 bis
 J_{13} auf, die folgende Bedeutung besitzen:

$$\begin{split} J_{7} &= \int \int a^{2}(1) \ a^{2}(2) \ \frac{1}{r_{12}} \ d\tau_{1} \ d\tau_{2} = \alpha \widetilde{J}_{7}(\omega) , \\ J_{8} &= \int \int a^{2}(1) \ b^{2}(2) \ \frac{1}{r_{12}} \ d\tau_{1} \ d\tau_{2} = \alpha \widetilde{J}_{8}(\omega) , \\ J_{9} &= \int \int a^{2}(1) \ a(2) \ b(2) \ \frac{1}{r_{12}} \ d\tau_{1} \ d\tau_{2} = \alpha \widetilde{J}_{9}(\omega) , \\ J_{10} &= \int \int a(1) \ b(1) \ a(2) \ b(2) \ \frac{1}{r_{12}} \ d\tau_{1} \ d\tau_{2} = \alpha \widetilde{J}_{10}(\omega) , \\ J_{11} &= \int \int a^{2}(1) \ b(2) \ c(2) \ \frac{1}{r_{12}} \ d\tau_{1} \ d\tau_{2} = \alpha \widetilde{J}_{11}(\omega) , \\ J_{12} &= \int \int a(1) \ b(1) \ a(2) \ c(2) \ \frac{1}{r_{12}} \ d\tau_{1} \ d\tau_{2} = \alpha \widetilde{J}_{12}(\omega) , \\ J_{13} &= \int \int a(1) \ b(1) \ c(2) \ d(2) \ \frac{1}{r_{12}} \ d\tau_{1} \ d\tau_{2} = \alpha \widetilde{J}_{13}(\omega) , \end{split}$$

Der Beitrag der einzelnen Integrale ist in Abb. 1 dargestellt. Die Integrale J_7 bis J_{10} , die auch bei der MO-LCAO-Behandlung des H_2 auftreten, sind geschlossen integrierbar (siehe z. B. SLATER [10]). Größere Schwierigkeiten bereiten die Integrale J_{11} bis J_{13} . Man ist auf numerische Integration nach einem der gängigen Verfahren [1, 8, 9] angewiesen. Wir benutzten das Verfahren nach SHAVITT und KAEPLUS [9], das nach Ausführung einer Integraltransformation

Abb. 1. Einzelbeiträge der $\widetilde{J}_n(\omega)$ $n = 1, \ldots, 13$

die Berechnung auf eine numerische Integration über einen Würfel der Kantenlänge 1 zurückführt, wobei zur Berechnung der Integranden an den Stützstellen noch eine numerische Einfachintegration nötig ist. Die numerische Integration erfolgte mit der Gauß'schen Quadraturformel mit $6 \times 6 \times 6$ bzw. 10 Stützstellen. Die erzielte beschränkte Genauigkeit hängt mit der von der Rechenkapazität diktierten Stützstellenzahl zusammen und ist keine prinzipielle Eigenschaft obigen Verfahrens.

Für $R \to \infty$ erhält man die Grenzwerte

$$\lim_{R \to \infty} H_{11} = -1 + \frac{5}{32}, \quad \lim_{R \to \infty} H_{22} = -1 + \frac{125}{288}, \quad \lim_{R \to \infty} H_{12} = \frac{25}{96}$$

Die Konfiguration Φ_1 ist (ähnlich wie bei der MO-Behandlung des H₂ [10]) nicht in der Lage, den Grundzustand für große R zutreffend zu beschreiben. Für die mit Konfigurationswechselwirkung erhaltenen Energien ergeben sich die Grenzwerte

$$\lim_{R \to \infty} E_{1A_{1}, 1} = -1 , \quad \lim_{R \to \infty} E_{1A_{1}, 2} = -1 + \frac{80}{144}.$$

Die Optimierung des Parameters α erfolgte bezüglich des Grundzustandes $E_{1_{A_i},1}$ durch systematisches Probieren einzeln für jedes R. Um die Berechnung der Integrale für sehr viele Kombinationen α und R zu vermeiden, berechneten wir in der Darstellung . .

$$\begin{split} H_{11}(\alpha, R) &= \alpha^2 K_{11}(\omega) + \alpha P_{11}(\omega) , , \\ H_{22}(\alpha, R) &= \alpha^2 K_{22}(\omega) + \alpha P_{22}(\omega) , \\ H_{12}(\alpha, R) &= \alpha P_{12}(\omega) \end{split}$$

die Funktionen $K_{11}(\omega)$, $P_{11}(\omega)$, $K_{22}(\omega)$, $P_{22}(\omega)$, $P_{12}(\omega)$ für die Stützstellen $\omega = 1$; (0,5); 8,5 und ermittelten benötigte Zwischenwerte dieser Funktionen durch kubische Interpolation.

Numerische Ergebnisse und Genauigkeit

Als Bezugswerte für $\widetilde{J}_{11}(\omega)$ bis $\widetilde{J}_{13}(\omega)$ standen die Werte dieser Integrale für $\omega = 3,26598632$ AE zur Verfügung [9]. Zur Verdeutlichung der mit $6 \times 6 \times 6$; 10 Stützstellen erzielten Genauigkeit dient Tab. 1. Der Tabelle ist zu entnehmen, daß die von uns berechneten Werte der Integrale um zwei Einheiten der vierten Dezimale unsicher sind. Man erwartet für andere Werte von ω eine ähnliche Genauigkeit. Die mit 6 × 6 × 6; 10 Stützstellen errechneten Werte

der Integrale $\widetilde{J}_{11}(\omega)$ bis $\widetilde{J}_{13}(\omega)$ sind in Tab. 3 in den Spalten 2 bis 4 gerundet auf vier Dezimalen angegeben.

Die Fortpflanzung der Ungenauigkeit der Integrale $\widetilde{J}_{11}(\omega)$ bis $\widetilde{J}_{13}(\omega)$ wird in Tab. 2 demonstriert. In diesem Vergleich ist der Fehler kleiner als 6 Einheiten der vierten Dezimale. Der durch die Stützstellenzahl bedingte Fehler der Energiewerte wird daher für die entscheidenden Werte von R mit einer Einheit der dritten Dezimale abgeschätzt. In Tab. 3 sind alle berechneten Energiegrößen in AE dennoch auf vier Dezimalen gerundet angegeben. Aus den in Tab. 3, Spalte 5 bis 9, angegebenen Werte sind alle von α und R abhängigen Energiegrößen zu berechnen.

Die Kurven H_{11} und $H_{22}(\alpha = 1)$ in Abhängigkeit von R findet man in Abb. 2, ebenso die durch CI erzielten Verbesserungen $E_{^{1}A_{1},1}$ bzw. $E_{^{1}A_{1},2}$. Weiter ist in Abb. 2 die durch Scaling optimierte Kurve $E_{^{1}A_{1},1}$ enthalten, die entsprechende Wertetabelle ist zusammen mit den optimierten α -Werten in Tab. 4 gegeben. Auch ist in Abb. 2 die Kurve -1 - 6/R gestrichelt eingezeichnet, die man von der Energiekurve des Elektronengrundzustands subtrahieren muß, um die effektive Potentialkurve zu erhalten. Letztere ist in Abb. 3 (Kurve II) dargestellt, die errechneten Werte findet man in Tab. 4, Spalte 3.

Tabelle 1. Genauigkeit von $\widetilde{J}_{11}(\omega)$ bis $\widetilde{J}_{13}(\omega)$ für $\omega = 3,26598632$ AE

Stützstellen	$\widetilde{J}_{11}(\omega)$ [AE]	$\widetilde{J}_{12}(\omega)$ [AE]	$\widetilde{J}_{13}(\omega)$ [AE]	Literatur
$12 \times 12 \times 16$	0,09570384	0.03569398	0.03068196	[9]
$16 \times 16 \times 20$	0,09570501	0,03569354	0,03068170	[9]
20 imes20 imes24	0,09570556	0,03569368	0,03068187	[9]
	_	_	0,03068247	zit. nach [9]
$10 \times 10 \times 10$			0,03066185	eig. Rechnung
$6 \times 6 \times 6$	0,09559618	0,03551075	0,03052501	eig. Rechnung

Tabelle 2. Vergleich einiger Energiegrößen für $\alpha = 1$; R = 3,26598632 AE

Stützstellen	H_{11} [AE]	Has [AE]	H1. [AE]	En. (AE)	E_{14} (AE)
$20 \times 20 \times 24 6 \times 6 \times 6$	-2,72483 -2,72529	-2,00570 -2,00532	0,15633 0,15657	-2,75787 -2,75735	-1,97274 -1,97318
	0 1 E [AE] -1 - -2 - -3 - -4 - -5 - -4 - -6 -	$\begin{array}{cccc} 2 & 3 & 4 \\ \hline 1 & 1 & 1 \end{array}$ $H_{11} \approx E_{1A_{1,1}} (ohn \\ E_{1A_{1,1}} (mit \ Scalin \\ -1 - \frac{S}{2} \end{array}$	5 6 7 1 1 1	$\begin{array}{c} 8 \\ \hline 9 \\ \hline \\$	

Abb. 2. Verbesserung der Elektronenenergie durch CI und Scaling

\$	
Ð,	
T,	
Ľ	
ື	
ĒH	

ω [AE]	$\widetilde{J}_{11}(\omega)$ [AE]	$\widetilde{J}_{12}(\omega)$ [AE]	$\widetilde{J}_{13}(\omega)$ [AE]	$K_{11}(\omega)$ [AE]	$P_{11}(\omega)$ [AE]	$K_{22}(\omega)$ [AE]	$P_{22}(\omega)$ [AE]	$P_{12}(\omega) [{ m AE}]$
•	0.4784	0 4949	0.4126	0.7942	-5.8186	2.7318	-5.5362	0.1918
1.5	0.3616	0.2808	0.2662	0.6838	-4.9744	2,2178	-4,8393	0.1772
ू ि दा	0.2581	0.1691	0.1558	0,6076	-4,3131	1,8727	-4,2948	0,1662
2.5	0.1774	0,0950	0,0851	0,5679	-3,8155	1,6314	-3,8718	0,1594
` ಣ	0,1191	0,0505	0,0441	0,5619	-3,4485	1,4585	-3,5397	0,1566
3.5	0.0786	0.0258	0.0219	0.5838	-3,1818	1,3329	-3,2761	0,1573
3.92	0.0549	0,0143	0,0119	0,6183	-3,0169	1,2538	-3,0956	0,1600
4.5	0,0332	0,0061	0,0050	0,6805	-2,8542	1,1736	-2,8936	0,1661
2	0.0214	0,0029	0,0023	0.7388	-2,7563	1,1243	-2,7538	0,1726
5.5	0.0137	0.0013	0.0010	0.7945	-2,6839	1,0884	-2,6386	0,1793
9	0,0092	0,0006	0,0005	0,8436	-2,6268	1,0624	-2,5423	0,1853
6.5	0.0056	0,0003	0,0002	0.8842	-2,5816	1,0438	-2,4622	0,1902
-	0,0036	0,0001	0,0001	0.9162	-2,5417	1,0305	-2,3939	0,1975
7.5	0,0023	0,0000	0,0000	0.9404	-2,5058	1,0211	-2,3354	0,2022
` œ	0,0014	0,0000	0,0000	0,9583	-2,4729	1,0145	-2,2849	0,2064
8.5	0,0009	0,0000	0,0000	0.9712	-2,4423	1,0099	-2,2408	0,2100

296

P. KADURA:

			Id				
R [AE]	α	$E_{1_{A_1},1}$ [AE]	f(R) [AE]	<i>R</i> [AE]	α	<i>E</i> _{1<i>A</i>1, 1} [AE]	f(R) [AE]
1 1,5 2 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8	2,03 1,66 1,43 1,39 1,36 1,33 1,30 1,275 1,25 1,25 1,23 1,21	$\begin{array}{r} -6,2170\\ -4,8061\\ -3,9433\\ -3,8100\\ -3,6866\\ -3,5718\\ -3,4649\\ -3,3651\\ -3,2719\\ -3,1846\\ -3,1026\end{array}$	0,7820 0,1939 0,0567 0,0471 0,0406 0,0369 0,0351 0,0348 0,0358 0,0376 0,0402	3 3,5 4 4,5 5 5,5 6 6,5 7 7 7,5 8	$\begin{array}{c} 1,17\\ 1,10\\ 1,05\\ 1,02\\ 1,00\\$	$\begin{array}{r} -2,9531 \\ -2,6465 \\ -2,4118 \\ -2,2228 \\ -2,0831 \\ -1,9666 \\ -1,8709 \\ -1,7952 \\ -1,7314 \\ -1,6779 \\ -1,6729 \\ -1,6323 \end{array}$	0,0469 0,0677 0,0822 0,1049 0,1243 0,1290 0,1278 0,1257 0,1257 0,1221 0,1177
2,9	1,19	$ \begin{array}{c} -3,0256 \\ \hline [eV] [AE] \\ 17 - 0,4 \\ 7 - 0,4 \\ 9 - 0,3 \\ 7 - 0 \\ 9 - 0,3 \\ 7 - 0 \\ 9 - 0,2 \\ 4 - 0 \\ 3 - 0,7 \\ 2 - 0 \\ 7$		8,5 <i>E_{Akt}</i>	1,00	-1,5929	0,1129
			2 3	4 5 6	7	8 9R [AE]	

Tabelle 4

Abb. 3. Potentialkurve des Grundzustandes des H_4^{++} (tetraedrisch) I: CI ohne Scaling, II: CI mit Scaling

Die ungefähre Lage der relativen Extrema entnimmt man aus Abb. 3, Berechnungen weiterer Zwischenwerte lokalisieren das Minimum bei $R_{\min} = 2,47$ AE, $\alpha = 1,28$, $f(R_{\min}) = 0.0348$ AE; das Maximum bei $R_{\max} = 6,09$ AE, $\alpha = 1$, $f(R_{\max}) = 0,1291$ AE. Daraus erhält man durch Differenzbildung die Trennungsenergie $D_e = 0,0943$ AE = 2,56 eV, die Aktivierungsenergie der Komplexbildung beträgt $E_{akt} = 0,1291$ AE = 3,51 eV.

Die eigentümliche Form der Potentialkurve (Metastabilität) kommt heraus, wenn man die 1s-Atomfunktionen als Basisfunktionen benutzt. Bei Erweiterung der Basis muß man mit einer weiteren Absenkung der Energie rechnen. Um einen Eindruck vom Effekt der Basiserweiterung zu geben, zitieren wir in Tab. 5 die Ergebnisse von Christoffersen [2, 3] für H_3^+ .

Als Abschätzung für den Effekt weiterer Basiserweiterungen gibt CHRISTOFFER-SEN $E_{1_{A_1}} \ge -1,35$ AE. Die mit der 1s-Basis erzielten Resultate für H₃⁺ werden demnach im Minimum um 3, maximal um 5 Einheiten der zweiten Dezimale abgesenkt. Überträgt man die Abschätzung auf unseren Fall, so kann man hoffen, daß der Funktionswert von f(R) im Minimum negativ wird. Das würde u. U. Stabilität statt der bisher erzielten Metastabilität bedeuten. Da die Hinzunahme weiterer Konfigurationen sich für große R stärker auswirkt, muß man mit einer

	Tabelle 5	
Basis	$R_{\min} \left[\mathrm{AE} ight]$	$E_{1_{\mathcal{A}_1}}$ [AE]
1s	1,66	-1,29786
1s, 2s	1,6575	-1,30432
1s, 2s, 2p	1,6575	$-1,\!33264$

Abflachung des Potentialbergs rechnen. Am ungünstigsten lägen die Verhältnisse, wenn bei Basiserweiterung das Maximum und das Minimum verschwänden, was der Vortäuschung der Metastabilität durch einen mangelhaften Ansatz gleichkäme. Letzteres erscheint jedoch äußerst

zweifelhaft, da der relative Unterschied der Absenkung im Minimum und im Maximum 9 Einheiten der zweiten Dezimalen (AE) betragen müßte. Zusammenfassend vermuten wir, daß bei Basiserweiterung die qualitative Form der Potentialkurve erhalten bleibt, der Funktionswert für R_{\min} könnte negativ werden.

Diskussion der Resultate

Die Rechnungen bezweckten, unter allen tetraedrischen Konfigurationen von 4 Protonen eine als energetisch besonders günstig zu erweisen [7]. Während ein Elektron im Falle N = 3 und N = 4 nicht in der Lage ist, die Protonen zu binden, reichen schon zwei Elektronen aus, vier Protonen relativ zu anderen tetraedrischen Konfigurationen metastabil beieinanderzuhalten. Eine verzweigte Mehrzentrenbindung ist notwendig mit einer Anhäufung von positiven Zentren verbunden. Unsere Rechnungen stützten unsere Auffassung, daß derartige Konfigurationen deshalb energetisch einigermaßen vorteilhaft sind, da den Elektronen dabei sehr günstige Orbitale geboten werden, die die große Kernabstoßung kompensieren können.

Die Stabilität des untersuchten Aktivierungskomplexes H_4^{++} bleibt natürlich in dem Sinne offen, als wegen der angenommenen Tetraedersymmetrie der Kerne die Stabilität in einem eindimensionalen Unterraum des sechsdimensionalen Raumes gefunden wurde, in dem das effektive Potential der Kernbewegung der vier Kerne vollständig definiert ist. Es wäre interessant, das Verhalten des Systems bei behutsamem Abgehen von der Tetraedersymmetrie zu untersuchen. Studien anderer Kernkonfigurationen (linear, rechteckig, quadratisch) des Systems H_4 wurden von GRIFFING u.a. [4, 5, 6] im Zusammenhang mit reaktionskinetischen Fragen durchgeführt, dort waren aber keine Resultate des zweifach ionisierten Systems zum Vergleich zu entnehmen.

Obwohl bei unseren Untersuchungen die Bindungssituation im Vordergrund stand, ist der gefundene Potentialverlauf des tetraedrischen H_4^{++} sicher auch für die Theorie der Zwischenzustände in der Reaktionskinetik von gewissem Interesse.

Herrn Prof. Dr. H. DUNKEN, von dem der Impuls zu diesen Untersuchungen ausging, danke ich erneut herzlich für sein fortlaufendes förderndes Interesse an diesen Rechnungen.

Literatur

BARNETT, M. P., and C. A. COULSON: Phil. Trans. Roy. Soc. (London) A248, 221 (1951).
 CHRISTOFFERSEN, R. E., S. HAGSTROM, and F. PROSSER: J. chem. Physics 40, 236 (1964).
 J. chem. Physics 41, 960 (1964).

- 4. GRIFFING, V.: J. chem. Physics 23, 1015 (1955).
- 5. --, and A. MAČEK: J. chem. Physics 23, 1029 (1955).
- 6. --, and J. T. VANDERSLICE: J. chem. Physics 23, 1035 (1955).
- 7. KADURA, P.: Theoret. chim. Acta (Berl.) 7, 433 (1967).
- 8. LUNDQUIST, S. O., and P. O. LÖWDIN: Arkiv Fysik 3, 147 (1951).
- 9. SHAVITT, T., and M. KARPLUS: J. chem. Physics 43, 398 (1965).
- 10. SLATER, J. C.: Quantum theory of molecules and solids. Vol. 1. New York: McGraw-Hill 1963.

Dr. P. KADURA

Institut für Physikalische Chemie der Friedrich-Schiller-Universität x 69 Jena, Lessingstraße 10